高考知识网

当前位置:高考知识网 > 山东高考 > 正文

山东2018高考数学卷难不难,今年山东高考数学难度系数解读

高考知识网 时间:2023-08-14 00:04:22 

山东高考数学试卷,文理科试卷结构总体保持了传统的命题风格,以能力立意,注重考查考生的基础知识、基本技能和基本数学素养,符合考试说明的各项要求,贴近中学教学实际,是一份知识与能力完美融合、传统与创新和谐统一的优秀试卷.与相比,文理科相同题目减少为3个,注重姊妹题的设计.试题的顺序编排,遵循由易到难,符合学生由易到难的答题习惯.从命题内容来看,既突出热点内容的年年考查,又注意了非热点内容的考查,对教学工作有较好的导向性.纵观近四年的高考命题,基本围绕“基础考点”命题.同以往相比,今年对直线与圆没有独立的考题,文理均在压轴题的圆锥曲线问题中有所涉及直线与圆的位置关系,对基本不等式有独立考查,与往年突出考查等差数列不同,今年对此考查有所淡化。

2017年山东数学试卷“以稳为主”、“稳中有新”,试卷结构平稳,无偏怪题,个人感觉难度控制较为理想,特别是在体现文理差别方面,更为符合中学实际。

1.体现新课标理念,保持稳定,适度创新.试卷紧扣山东高考《考试说明》,重点内容重点考查,试题注重考查高中数学的基础知识,并以重点知识为主线组织全卷,在知识网络交汇处设计试题内容,且有适度难度.而对新增内容则重点考查基本概念、基础知识,难度不大.文科第10题考查函数性质的创新题,以函数为增函数定义函数的新性质,选择支以考生熟悉的初等函数为素材,为考生搭建问题平台,展示研究函数性质的基本方法;理科第14题与文科第15题相同,将双曲线、抛物线内容综合考查,理科第19题将数列与解析几何相结合,体现创新。

2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求. 数学思想方法是数学的灵魂,是对数学知识最高层次的概括与提炼,也是试卷考查的核心.通过命题精心设计,较好地考查了数形结合的思想、函数与方程的思想、转化与化归的数学思想.利用函数导数讨论函数的单调性、极值的过程,将分类与整合的思想挖掘得淋漓尽致。

3.体现数学应用,关注社会生活.文理科均通过概率统计问题考查考生应用数学的能力,以学生都熟悉的内容为背景,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向。

命题趋势

2018年起,山东将不再自主命题,综合全国卷特点,结合山东教学实际,预测教学、复习备考时应注意一下几个方面。

1.函数与导数知识:以导数知识为背景的函数问题,多于单调性相关;对具体函数的基本性质(奇偶性、周期性、函数图象、函数与方程)、分段函数及抽象函数考查依然是重点. 导数的几何意义,利用导数研究函数的性质,命题变换空间较大,直接应用问题、定值问题、存在性问题、求参数问题等等,因此,其难度应会保持在中档以上。

2.三角函数与向量知识:三角函数将从三角函数的图象和性质、三角变换、解三角形等三个方面进行考查,预计在未来考卷中,三方面内容依然会轮流出现在小题、大题中,大题综合化的趋势不容忽视.向量具有数与形的双重性,并具有较强的工具性,从近几年命题看,高考中向量试题的命题趋向依然是,考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题,其难度不会增大。

3.不等式知识:突出工具性,淡化独立性,突出解不等式及不等式的应用是不等式命题的重要趋向之一.不等式的性质与指数函数、对数函数、三角函数、二次函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多与导数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性往往较强,能力要求较高;解不等式的试题,往往与集合、函数图象等相结合。

4.数列知识:等差数列、等比数列的通项公式及求和公式,依然会是考查的重点.由于数列求和问题的求解策略较为模式化,因此,这方面的创新往往会在融入“和”与“通项”的关系方面,让考生从此探究数列特征,确定应对方法.少有可能会象浙江卷,将数列与不等式综合,作为压轴难题出现。

5.立体几何知识:近几年的命题说明,通过垂直、平行位置关系的证明题,二面角等角的计算问题,综合考查考生的逻辑思维能力、推理论证能力以及计算能力,在这方面文科倾向于证明,理科则倾向于证算并重,理科将更倾向于利用空间向量方法解题。

6.解析几何知识:预计小题中考查直线与圆、双曲线及抛物线的标准方程和几何性质为主旋律,解答题考查椭圆及椭圆与直线的位置关系等综合性问题为主,考查抛物线及抛物线与直线的位置关系等综合性问题为辅,和导数一样,命题变换空间较大,面积问题、定点问题、定值问题、存在性问题、求参数问题等等,因此,导数问题或圆锥曲线问题作为压轴题的地位难以变化。

6.概率与统计知识:概率统计知识较为繁杂,命题的难度伸缩性也较大,其中较多考查基础知识、基本应用能力的内容应包括:古典概型、几何概型、茎叶图、平均数、中位数、变量的相关性、频率分布直方图(表)、正态分布、假设性检验、回归分析等,而对随机变量分布列、期望等的考查,则易于增大难度,在分布列的确定过程中,应用二项分布、几何分布等。

相关文章
相关搜索
热门推荐